Voltage sensitive phosphoinositide phosphatases of Xenopus: their tissue distribution and voltage dependence.
نویسندگان
چکیده
Voltage-sensitive phosphatases (VSPs) are unique proteins in which membrane potential controls enzyme activity. They are comprised of the voltage sensor domain of an ion channel coupled to a lipid phosphatase specific for phosphoinositides, and for ascidian and zebrafish VSPs, the phosphatase activity has been found to be activated by membrane depolarization. The physiological functions of these proteins are unknown, but their expression in testis and embryos suggests a role in fertilization or development. Here we investigate the expression pattern and voltage dependence of VSPs in two frog species, Xenopus laevis and Xenopus tropicalis, that are well suited for experimental studies of these possible functions. X. laevis has two VSP genes (Xl-VSP1 and Xl-VSP2), whereas X. tropicalis has only one gene (Xt-VSP). The highest expression of these genes was observed in testis, ovary, liver, and kidney. Our results show that while Xl-VSP2 activates only at positive membrane potentials outside of the physiological range, Xl-VSP1 and Xt-VSP phosphatase activity is regulated in the voltage range that regulates sperm-egg fusion at fertilization.
منابع مشابه
Functional diversity of voltage‐sensing phosphatases in two urodele amphibians
Voltage-sensing phosphatases (VSPs) share the molecular architecture of the voltage sensor domain (VSD) with voltage-gated ion channels and the phosphoinositide phosphatase region with the phosphatase and tensin homolog (PTEN), respectively. VSPs enzymatic activities are regulated by the motions of VSD upon depolarization. The physiological role of these proteins has remained elusive, and insig...
متن کاملControlling the activity of a phosphatase and tensin homolog (PTEN) by membrane potential.
The recently discovered voltage-sensitive phosphatases (VSPs) hydrolyze phosphoinositides upon depolarization of the membrane potential, thus representing a novel principle for the transduction of electrical activity into biochemical signals. Here, we demonstrate the possibility to confer voltage sensitivity to cytosolic enzymes. By fusing the tumor suppressor PTEN to the voltage sensor of the ...
متن کاملAn Intelligent Method Based on WNN for Estimating Voltage Harmonic Waveforms of Non-monitored Sensitive Loads in Distribution Network
An intelligent method based on wavelet neural network (WNN) is presented in this study to estimate voltage harmonic distortion waveforms at a non-monitored sensitive load. Voltage harmonics are considered as the main type of waveform distortion in the power quality approach. To detect and analyze voltage harmonics, it is not economical to install power quality monitors (PQMs) at all buses. The ...
متن کاملA New Control Strategy for Voltage Restoration and Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid
Low voltage microgrids including sensitive loads often face unbalanced load conditions. Therefore, a compensation procedure should be carried out in order to balance and restore sensitive load’s voltage. In this paper, an effective voltage control strategy has been proposed for the autonomous operation of microgrids, under unbalanced load conditions. The proposed strategy balances single-phase...
متن کاملEvolution of the voltage sensor domain of the voltage-sensitive phosphoinositide phosphatase VSP/TPTE suggests a role as a proton channel in eutherian mammals.
The voltage-sensitive phosphoinositide phosphatases provide a mechanism to couple changes in the transmembrane electrical potential to intracellular signal transduction pathways. These proteins share a domain architecture that is conserved in deuterostomes. However, gene duplication events in primates, including humans, give rise to the paralogs TPTE and TPTE2 that retain protein domain organiz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cellular physiology
دوره 226 11 شماره
صفحات -
تاریخ انتشار 2011